Vojta's conjecture and level structures on abelian varieties

Dan Abramovich, Brown University Joint work with Anthony Várilly-Alvarado and Keerthi Padapusi Pera

ICERM workshop on Birational Geometry and Arithmetic May 17, 2018

Torsion on elliptic curves

Following [Mazur 1977]...

Theorem (Merel, 1996)

Fix $d \in \mathbb{Z}_{>0}$. There is an integer c = c(d) such that: For all number fields k with $[k : \mathbb{Q}] = d$ and all elliptic curves E/k,

 $\#E(k)_{\rm tors} < c.$

Mazur: d = 1. What about higher dimension?

(Jump to theorem)

Torsion on abelian varieties

Theorem (Cadoret, Tamagawa 2012)

Let k be a field, finitely generated over \mathbb{Q} ; let p be a prime. Let $A \rightarrow S$ be an abelian scheme over a k-curve S. There is an integer c = c(A, S, k, p) such that

 $\#A_s(k)[p^\infty] \le c$

for all $s \in S(k)$.

What about all torsion? What about all abelian varieties of fixed dimension together?

Main Theorem

Let A be a g-dimensional abelian variety over a number field k.

A full-level m structure on A is an isomorphism of k-group schemes

 $A[m] \xrightarrow{\sim} (\mathbb{Z}/m\mathbb{Z})^g \times (\mu_m)^g$

Theorem (ℵ, V.-A., M. P. 2017)

Assume Vojta's conjecture. Fix $g \in \mathbb{Z}_{>0}$ and a number field k. There is an integer $m_0 = m_0(k,g)$ such that: For any $m > m_0$ there is no principally polarized abelian variety A/k of dimension g with full-level m structure.

Why not torsion? What's with Vojta?

Mazur's theorem revisited

- Consider the curves $\pi_m: X_1(m) \to X(1)$.
- $X_1(m)$ parametrizes elliptic curves with *m*-torsion.
- Observation: $g(X_1(m)) \xrightarrow[m \to \infty]{} \infty$ (quadratically)
- Faltings (1983) $\Longrightarrow X_1(m)(\mathbb{Q})$ finite for large m.
- Manin $(1969!):^1 \Longrightarrow X_1(p^k)(\mathbb{Q})$ finite for some k,
- and by Mordell–Weil $X_1(p^k)(\mathbb{Q}) = \emptyset$ for large k.

But there are infinitely many primes $> m_0$

(Jump to Flexor-Oesterlé)

¹Demjanjenko

Aside: Cadoret-Tamagawa

- Cadoret-Tamagawa consider similarly $S_1(m) \rightarrow S$, with components $S_1(m)^j$.
- They show $g(S_1^j(p^k)) \longrightarrow \infty$,...
- unless they correspond to torsion on an isotrivial factor of A/S.
- Again this suffices by Faltings and Mordell–Weil for their p^k theorem.

Is there an analogue for higher dimensional base?

Mazur's theorem revisited: Flexor-Oesterlé, Silverberg

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer M = M(g) so that: Suppose $A(\mathbb{Q})[p] \neq \{0\}$, suppose q is a prime, and suppose $p > (1 + \sqrt{q}^M)^{2g}$. Then the reduction of A at q is "not even potentially good".

- *p* torsion reduced injectively moduo *q*.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree < M, so that follows too.

Remark:

- Flexor and Oesterlé proceed to show that ABC implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.
- Mazur proceeds in another way

Mazur's theorem revisited after Merel: Kolyvagin-Logachev, Bump-Friedberg-Hoffstein, Kamienny

The following suffices for Mazur's theorem:

Theorem

For all large p, $X_1(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_0(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f, s) = 0$.
- [KL, BFH 1990] The corresponding factor $J_0(p)_f$ has rank 0.
- [Mazur, Kamienny 1982] The composite map X₁(p) → J₀(p)_f sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_0(p)_f$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Is there a replacement for g > 1??????

Main Theorem

Let A be a g-dimensional abelian variety over a number field k.

A full-level m structure on A is an isomorphism of k-group schemes

$$A[m] \xrightarrow{\sim} (\mathbb{Z}/m\mathbb{Z})^g \times (\mu_m)^g$$

Theorem (ℵ, V.-A., M. P. 2017)

Assume Vojta's conjecture.

Fix $g \in \mathbb{Z}_{>0}$ and a number field k.

There is an integer $m_0 = m_0(k,g)$ such that:

For any prime $p > m_0$ there is no (pp) abelian variety A/k of dimension g with full-level p structure.

Strategy

- $\widetilde{\mathscr{A}}_g \to \operatorname{Spec} \mathbb{Z} := \operatorname{moduli} \operatorname{stack}$ of ppav's of dimension g.
- $\widetilde{\mathcal{A}}_g(k)_{[m]} := k$ -rational points of $\widetilde{\mathcal{A}}_g$ corresponding to ppav's A/k admitting a full-level *m* structure.
- $\widetilde{\mathcal{A}}_{g}(k)_{[m]} = \pi_{m}(\widetilde{\mathcal{A}}_{g}^{[m]}(k)),$ where $\widetilde{\mathcal{A}}_{g}^{[m]}$ is the space of ppav with full level.

•
$$W_i := \overline{\bigcup_{p \ge i} \widetilde{\mathscr{A}}_g(k)_{[p]}}$$

•
$$W_i$$
 is closed in $\widetilde{\mathcal{A}}_g$ and $W_i \supseteq W_{i+1}$.

- $\widetilde{\mathcal{A}}_g$ is Noetherian, so $W_n = W_{n+1} = \cdots$ for some n > 0.
- Vojta for stacks $\Rightarrow W_n$ has dimension ≤ 0 .

(Jump to Vojta)

Dimension 0 case (with Flexor–Oesterlé)

• Suppose that
$$W_n = \overline{\bigcup_{p \ge n} \widetilde{\mathscr{A}}_g(k)_{[p]}}$$
 has dimension 0.

- representing finitely many geometric isomorphism classes of ppav's.
- Fix a point in W_n that comes from some A/k.
- Pick a prime $q \in \operatorname{Spec} \mathcal{O}_k$ of potentially good reduction for A.
- Twists of A with full-level p structure (p > 2; q ∤ p) have good reduction at q.
- *p*-torsion injects modulo $q \implies p \le (1 + Nq^{1/2})^2$.

There are other approaches!

Towards Vojta's conjecture

- k a number field; S a finite set of places containing infinite places. • $(\mathcal{X}, \mathcal{Q})$ a pair with:
- $(\mathscr{X}, \mathscr{D})$ a pair with:
 - ▶ $\mathscr{X} \to \operatorname{Spec} \mathscr{O}_{k,S}$ a smooth proper morphism of schemes;
 - \mathscr{D} a fiber-wise normal crossings divisor on \mathscr{X} .
 - (X,D) := the generic fiber of $(\mathscr{X},\mathscr{D}); \mathscr{D} = \sum_i \mathscr{D}_i.$
- We view $x \in \mathscr{X}(\overline{k})$ as a point of $\mathscr{X}(\mathscr{O}_{k(x)})$, or a scheme $\mathscr{T}_{x} := \operatorname{Spec} \mathscr{O}_{k(x)} \to \mathscr{X}$.

Towards Vojta: counting functions and discriminants

Definition

For $x \in \mathscr{X}(\overline{k})$ with residue field k(x) define the truncated counting function

$$N_{k}^{(1)}(D,x) = \frac{1}{[k(x):k]} \sum_{\substack{\mathfrak{q} \in \operatorname{Spec}\mathcal{O}_{k,S} \\ (\mathcal{D}|_{\mathcal{F}_{x}})_{\mathfrak{q}} \neq \emptyset}} \log \underbrace{|\kappa(\mathfrak{q})|}_{\substack{\text{size of} \\ \operatorname{residue field}}}$$

and the relative logarithmic discriminant

$$d_k(k(x)) = \frac{1}{[k(x):k]} \log |\operatorname{Disc}\mathcal{O}_{k(x)}| - \log |\operatorname{Disc}\mathcal{O}_k|$$
$$= \frac{1}{[k(x):k]} \deg \Omega_{\mathcal{O}_{k(x)}/\mathcal{O}_k}.$$

Vojta's conjecture

Conjecture (Vojta c. 1984; 1998)

X a smooth projective variety over a number field k.

D a normal crossings divisor on X; H a big line bundle on X.

Fix a positive integer r and $\delta > 0$.

There is a proper Zariski closed $Z \subset X$ containing D such that

$$N_{X}^{(1)}(D,x) + d_{k}(k(x)) \ge h_{K_{X}+D}(x) - \delta h_{H}(x) - O_{r}(1)$$

for all $x \in X(\overline{k}) \setminus Z(\overline{k})$ with $[k(x):k] \leq r$.

 $d_k(k(x))$ measure failure of being in $\mathscr{X}(k)$ $N_X^{(1)}(D,x)$ measure failure of being in $\mathscr{X}^0(\mathscr{O}_k) = (\mathscr{X} \setminus \mathscr{D})(\mathscr{O}_k)$

Vojta's conjecture: special cases

- D = Ø; H = K_X; r = 1; X of general type: Lang's conjecture: X(k) not Zariski dense.
- $H = K_X(D)$; r = 1; S a finite set of places ; (X, D) of log general type: Lang-Vojta conjecture: $\mathscr{X}^0(\mathscr{O}_{k,S})$ not Zariski dense.
- $X = \mathbb{P}^1$; r = 1; $D = \{0, 1, \infty\}$: Masser–Oesterlé's ABC conjecture.

Extending Vojta to DM stacks

Recall: Vojta ⇒ Lang.

• Example: $X = \mathbb{P}^2(\sqrt{C})$, where C a smooth curve of degree > 6.

• Then $K_X \sim \mathcal{O}(d/2-3)$ is big, so X of general type, but X(k) is dense.

- The point is that a rational point might still fail to be integral: it may have "potentially good reduction" but not "good reduction"!
- The correct form of Lang's conjecture is: if X is of general type then $\mathscr{X}(\mathscr{O}_{k,S})$ is not Zariski-dense.

What about a quantitative version? We need to account that even rational points may be ramified.

- Heights and intersection numbers are defined as usual.
- We must define the discriminant of a point $x \in X(k)$.

Discriminant of a rational point

- $\mathscr{X} \to \operatorname{Spec} \mathcal{O}_{k,S}$ smooth proper, \mathscr{X} a DM stack.
- For x ∈ X(k̄) with residue field k(x), take Zariski closure and normalization of its image.
- Get a morphism $\mathcal{T}_x \to \mathcal{X}$, with \mathcal{T}_x a normal stack with coarse moduli scheme $\operatorname{Spec}\mathcal{O}_{k(x),S}$.
- The relative logarithmic discriminant is

$$d_k(\mathcal{T}_x) = \frac{1}{\deg \mathcal{T}_x / \mathcal{O}_k} \deg \Omega_{\mathcal{T}_x / \mathcal{O}_k}.$$

Vojta's conjecture for stacks

Conjecture

k number field; S a finite set of places (including infinite ones). $\mathscr{X} \to \operatorname{Spec}\mathcal{O}_{k,S}$ a smooth proper DM stack. $X = \mathscr{X}_k$ generic fiber (assume irreducible) \underline{X} coarse moduli of X; assume projective with big line bundle H. $\mathscr{D} \subseteq \mathscr{X}$ NC divisor with generic fiber D. Fix a positive integer r and $\delta > 0$.

There is a proper Zariski closed $Z \subset X$ containing D such that

$$N_{\chi}^{(1)}(D,x) + d_k(\mathcal{T}_{\chi}) \ge h_{K_{\chi}+D}(x) - \delta h_H(x) - O(1)$$

for all $x \in X(\overline{k}) \setminus Z(\overline{k})$ with $[k(x):k] \leq r$.

Vojta is flexible

Proposition (ℵ, V.-A. 2017)

Vojta for DM stacks follows from Vojta for schemes.

Key: Vojta showed that Vojta's conjecture is compatible with taking branched covers.

Proposition (Kresch-Vistoli)

- There is a finite flat surjective morphism $\pi: Y \to \mathscr{X}$
- with Y a smooth projective irreducible scheme
- and $D_Y := \pi^* \mathscr{D}$ a NC divisor.

Vojta for $Y \implies$ Vojta for X.

Completing the proof of the Main Theorem

Recall:

$W_i := \overline{\bigcup_{p \ge i} \widetilde{\mathscr{A}}_g(k)_{[p]}}$

• and $W_n = W_{n+1} = \cdots$ for some n > 0.

- Want to show: dim $W_n \leq 0$. Proceed by contradiction.
- Let X is an irreducible positive dimensional component of W_n .
- $X' \rightarrow X$ a resolution of singularities.
- $X' \subseteq \overline{X}'$ smooth compactification with $D := \overline{X}' X$ NC divisor.
- Pick model $(\mathscr{X}, \mathscr{D})$ of (\overline{X}', D) over $\operatorname{Spec} \mathcal{O}_{k,S}$ (Olsson)

Birational geometry

- [Zuo 2000] $K_{\overline{X}'} + D$ is big.
- Remark [Brunebarbe 2017]:

As soon as m > 12g, every subvariety of $\mathscr{A}_g^{[m]}$ is of general type. Uses the fact that $\mathscr{A}_g^{[m]} \to \mathscr{A}_g$ is highly ramified along the boundary. Implies a Manin-type result for full $[p^r]$ -levels.

- Can one prove a result for torsion rather than full level?
- Taking $H = K_{\overline{X}'} + D$ get by Northcott an observation on the right hand side of Vojta's conjecture

$$N_X^{(1)}(D,x) + d_k(\mathcal{T}_x) \ge \underbrace{h_{K_{\overline{X}'}+D}(x) - \delta h_H(x)}_{H_{\overline{X}'}(x) - \delta h_H(x)} - O(1)$$

large for small δ away from some Z

Key Lemma

 $X(k)_{[p]} = k$ -rational points of X corresponding to ppav's A/k admitting a full-level p structure.

Lemma

Fix $\epsilon_1, \epsilon_2 > 0$. For all $p \gg 0$ and $x \in X(k)_{[p]}$, we have (1) $N_x^{(1)}(D, x) \le \epsilon_1 h_D(x) + O(1)$

and

(1)

 $d_k(\mathcal{T}_x) \leq \epsilon_2 h_D(x) + O(1).$

Note: $h_D \ll h_H$ outside some Z. Vojta gives, outside some Z, $h_H(x) \ll N_X^{(1)}(D,x) + d_k(\mathcal{T}_X) \ll \epsilon h_H(x)$, giving finiteness outside this Z by Northcott. (1) $N^{(1)}(D,x) \ll \epsilon_1 h_D(x)$

- x is the image of a rational point on $\mathscr{A}_g^{[P]}$
- $\pi_p : \mathscr{A}_g^{[p]} \to \mathscr{A}_g$ is highly ramified along D (Mumford / Madapusi Pera).
- So whenever $(D|_{\mathcal{T}_x})_{\mathfrak{q}} \neq \emptyset$ its multiplicity is $\gg p$.
- so $N^{(1)}(D,x) \ll h_D(x) \underbrace{\frac{1}{p}}_{\sim \epsilon_1}$.

(2) $d_k(\mathcal{T}_x) \leq \epsilon_2 h_D(x)$

- x corresponds to an abelian variety with many p-torsion points.
- Flexor–Oesterlé at any small prime $\Rightarrow h_D(x) \gg p^s$.
- x has semistable reduction outside $p \Rightarrow d_k(\mathcal{T}_x) \ll \log p$ • so $d_k(\mathcal{T}_x) \ll h_D(x) \underbrace{\frac{\log p}{p^s}}_{\sim \epsilon_2}$.